Freewing F-35 V3 twin 70mm Rc Jet review from Zhou Cheng Qing,the boss from Freewing Model.

Freewing F-35 V3 twin 70mm Rc Jet review on June 15th,2019

Written by Zhou Cheng Qing(the Boss of Freewing Model) in China Freewing Model,
Sport jet performance in a scale model
Product review
As seen in the June,15th 2019
In China


the history of F-35 Jet:
F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018.[25] The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.

The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%.[26] The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.

By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance.[27] A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.

Overview of F-35 Jet

Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.[not in citation given]

Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor,[31] and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".

Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition"

Improvements of F-35 Jet
Ostensible improvements over past-generation fighter aircraft include:

Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes
High-speed data networking including IEEE 1394b[38] and Fibre Channel[39] (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system.The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area[54] and elevators; the F-35C's longer wing is considered to be more fuel efficient.


Specifications ofr F-35 V3 Model